Open Question: differential equation; separation of variables dx(t)/dt = k(a-x(t))(b-x(t))?

16:02 Publicado por Flechado16

Start: dx/[(a-x)(b-x)] = kdt

1/(a-x)(b-x) = [A/(a-x)] +B/(b-x) => A = 1/(b-a) B=1/(a-b)

The integrand is then [1/(b-a)][1/(a-x) - 1/(b-x)], which integrates to [1/(b-a)]ln{(b-x)/(a-x)} and kdt just integrates to kt.


View the original article here

  • Digg
  • del.icio.us
  • StumbleUpon
  • Yahoo! Buzz
  • Technorati
  • Facebook
  • TwitThis
  • MySpace
  • LinkedIn
  • Live
  • Google
  • Reddit
  • Sphinn
  • Propeller
  • Slashdot
  • Netvibes

0 comentarios:

Publicar un comentario