Open Question: Slope of line tangent to x^3+y^3=3xy?

6:22 Publicado por Flechado16

The slope of the tangent is where the derivative is 0. So you have to use product rule and implicit differentiation to get:

3x^2 + 3y^2 * y' = 3xy' + 3y

Solving for y':
3y^2 y' - 3xy' = 3y - 3x^2
y' [3y^2 - 3x] = 3y - 3x^2
y' = (3y - 3x^2) / (3y^2 - 3x)
y' = (y - x^2) / (y^2 - x)

When y' = 0 gives 0 = y - x^2 => At (x, y) the gradient is m = x^2/y


View the original article here

  • Digg
  • del.icio.us
  • StumbleUpon
  • Yahoo! Buzz
  • Technorati
  • Facebook
  • TwitThis
  • MySpace
  • LinkedIn
  • Live
  • Google
  • Reddit
  • Sphinn
  • Propeller
  • Slashdot
  • Netvibes

0 comentarios:

Publicar un comentario