Open Question: differentiate ((x^4)+(3x^2)+1)(1/(x^3)+1/x)?
This is easily manageable with the quotient rule!!!
Question (x^4 + 3x^2 + 1) / (1/x^3 + 1/x)
ans: ((4x^3 + 6x)(1/x^3 + 1/x) - (x^4 + 3x^2 + 1)(-3/x^4 - 1/x^2))/(1/x^3 + 1/x)^2
Now, lets simplify:
ans = ((4 + 6 + 4x^2 + 6/x^2) - (-3 -3 - x^2 - 9/x^2 - 3/x^4 - 1/x^2))/(1/x^6+2/x^4+1/x^2)
= (16 + 5x^2 + 16/x^2 + 3/x^4)/(1/x^6 + 2/x^4 + 1/x^2)
multiply by x^6:
= (3x^2 + 16x^4 + 16x^6 + 5x^8)/(x^2 + 1)^2
0 comentarios:
Publicar un comentario