Open Question: The graph of the function F(x)=-(x-5)^3 is concave upward in what interval?

7:43 Publicado por Flechado16

F(x)=-(x-5)^3
F'(x) = -3(x-5)^2
F''(x) = (-3)(2)(x-5)
F''(x) = -6(x-5)=0

x=5 is a point of inflection

Test for concavity:
Consider the intervals (-8 ,5), (5, 8)

choose any one point from each of the intervals.
if F''(x) < 0 , F(x) is concave down on that interval
if F''(x) > 0 , F(x) is concave up on that interval

F''(x)= -6(x-5)
(-8 ,5): choose x=1; F''(1)=24 > 0, f is concave up on (-8 ,5):
(5, 8): choose x=6; F''(1)=-6 < 0, f is concave down on (5, 8):

F is concave up on (-8 ,5):


View the original article here

  • Digg
  • del.icio.us
  • StumbleUpon
  • Yahoo! Buzz
  • Technorati
  • Facebook
  • TwitThis
  • MySpace
  • LinkedIn
  • Live
  • Google
  • Reddit
  • Sphinn
  • Propeller
  • Slashdot
  • Netvibes

0 comentarios:

Publicar un comentario