Open Question: G(x)=px^2+5+x^2+qx-18 divided by (x+2)?
Rewrite G(x) as:
G(x) = px² + qx + x² + 5 - 18
= (p + 1)x² + qx - 13
Then, using synthetic division, we have:
-2 | (p + 1) . . . . + q . . . . . . . . . . . .- 13
. . . . . . . . . - 2(p + 1). . . . . . -2[-2(p + 1) + q]
. . .(p + 1) . - 2(p + 1) + q . . . -2[-2(p + 1) + q] - 13
So the quotient is:
(p + 1)x - 2(p + 1) + q
= px + x - 2p - 2 + q
The remainder is:
-2[-2(p + 1) + q] - 13
= 4(p + 1) - 2q - 13
= 4p + 4 - 2q - 13
= 4p - 2q - 9
I hope this helps!
0 comentarios:
Publicar un comentario