Open Question: Find E₁, E₂, and E₃ such that E₃E₂E₁A = U. Linear Algebra please help!?
Given A=
[2 1 1
6 4 5
4 1 3]
a) Find elementary matrices E1, E2, E3 such that E3E2E1A=U where U is an upper triangular matrix.
b) Determine the inverses of E1, E2, E3 and set L=(E1^-1)(E2^-1)(E3^-1). What type of matrix is L? Verify that A=LU.
[2 1 1
6 4 5
4 1 3]
a) Find elementary matrices E1, E2, E3 such that E3E2E1A=U where U is an upper triangular matrix.
b) Determine the inverses of E1, E2, E3 and set L=(E1^-1)(E2^-1)(E3^-1). What type of matrix is L? Verify that A=LU.
PLEASE EXPLAIN HOW TO GET THE SOLUTION, DON'T ASSUME I KNOW ANYTHING, BECAUSE I DONT.
0 comentarios:
Publicar un comentario