Open Question: Find E₁, E₂, and E₃ such that E₃E₂E₁A = U. Linear Algebra please help!?

23:57 Publicado por Nadim

Given A=
[2 1 1
6 4 5
4 1 3]
a) Find elementary matrices E1, E2, E3 such that E3E2E1A=U where U is an upper triangular matrix.
b) Determine the inverses of E1, E2, E3 and set L=(E1^-1)(E2^-1)(E3^-1). What type of matrix is L? Verify that A=LU.

PLEASE EXPLAIN HOW TO GET THE SOLUTION, DON'T ASSUME I KNOW ANYTHING, BECAUSE I DONT.


View the original article here

  • Digg
  • del.icio.us
  • StumbleUpon
  • Yahoo! Buzz
  • Technorati
  • Facebook
  • TwitThis
  • MySpace
  • LinkedIn
  • Live
  • Google
  • Reddit
  • Sphinn
  • Propeller
  • Slashdot
  • Netvibes

0 comentarios:

Publicar un comentario